X
この記事は、経験豊富なwikiHowの編集者と調査員から成るチームによって執筆されています。調査員チームは内容の正確性と網羅性を確認しています。
wikiHowのコンテンツ管理チームは、編集チームが編集した記事を細心の注意を払って精査し、すべての記事がwikiHowの高品質基準を満たしているかどうかを確認しています。
この記事には8件の参照文献があり、文献一覧は記事の最後に表示されています。
この記事は1,507回アクセスされました。
分数の足し算を習得すると非常に便利です。小学生から高校生までの学習に必要なだけでなく、極めて実用的な知識となるでしょう。この記事を読めば、ほんの数分で分数の足し算ができるようになります。
ステップ
-
各分数の分母(下の数字)を確認しましょう。分母の数字が同じなら、分母が同じ分数の足し算をすることになります。[1] 分母の数字が異なる場合は、パート2を参考にしましょう。
-
ここでは、次の2つの例題を使います。最後まで読み進めると、分母が同じ分数の足し算をする方法が理解できるでしょう。
- 例題1:1/4+2/4
- 例題2:3/8+2/8+4/8
-
分子(上の数字)同士を足しましょう。分子とは分数の上の数字です。計算式に分数が3個以上ある場合、分母が同じであればすべての分子を足します。[2]
- 例題1:1/4+2/4の場合は、分子が「1」と「2」なので、1+2=3となります。
- 例題2:3/8+2/8+4/8の場合は、分子が「3」と「2」と「4」なので、3+2+4=9となります。
-
答えを求めましょう。前の手順で求めた分子の和が答えの分子になります。共通の分母はそのまま使いましょう。分母を計算する必要はありません。元の分母が答えの分母になります。分母が同じ分数の足し算では、答えの分母は問題の分母と同じです。
- 例題1:答えの分子は3、分母は4のままなので3/4となります。つまり、1/4+2/4=3/4です。
- 例題2:答えの分子は9、分母は8のままなので9/8となります。つまり、 3/8+2/8+4/8=9/8です。
-
必要であれば約分しましょう。答えを約分して、できるだけ簡単な分数で表します。[3]
-
例題2のように分子が分母より大きい場合は、整数を取り出して帯分数で表すことができます。分子を分母で割りましょう。9を8で割ると商は1で余りは1です。商を帯分数の整数部分に書き、 余りを分子に書きましょう。分母は変わりません。
9/8=1 1/8となります。
広告 -
例題2のように分子が分母より大きい場合は、整数を取り出して帯分数で表すことができます。分子を分母で割りましょう。9を8で割ると商は1で余りは1です。商を帯分数の整数部分に書き、 余りを分子に書きましょう。分母は変わりません。
-
各分数の分母(下の数字)を確認しましょう。分母の数字が異なる場合は、分母の異なる分数の足し算をすることになります。この場合は、異なる分母を同じ数字に揃える方法を見つける必要があります。詳しく見ていきましょう。[4]
-
ここでは、次の2つの例題を使います。最後まで読み進めると、分母の異なる足し算をする方法が理解できるでしょう。
- 例題3:1/3+3/5
- 例題4:2/7+2/14
-
最小公分母を見つけます。2つの分母の「倍数」を探しましょう。最小公分母を見つける最も簡単な方法は、分母同士を掛けることです。分母の1つが他の分母の倍数なら、片方の分母を掛けるだけで両方の分母が同じ数字になるでしょう。[5]
- 例題3: 3×5=15なので、両方の分数の分母を15とします。
- 例題4: 14は7の倍数なので、7と2を掛けた値14を両方の分母とします。
-
「1番目」の分数の上下の数字に2番目の分数の下の数字を掛けましょう。こうすると、分数の見た目が変わりますが、大きさは変わりません。どちらも同じ割合を表します。[6]
- 例題3: 1/3×5/5=5/15となります。
-
例題4:この例題は1番目の分数に2を掛けるだけで分母が揃います。
- 2/7×2/2=4/14となります。
-
「2番目の」分数の上下の数字に1番目の分数の下の数字を掛けましょう。こうすると、分数の見た目が変わりますが、大きさは変わりません。どちらも同じ割合を表します。
- 例題3: 3/5×3/3=9/15となります。
- 例題4:分母がすでに揃っているので、 掛ける必要はありません。
-
分母が同じ分数で計算式を書き直しましょう。まだ足し算をしていませんが、すぐに計算できるようになります。これまでに行ったのは各分数に1を掛けることで、これで分母が揃います。
- 例題3: 1/3+3/5の分母を揃え、5/15+9/15と表します。
- 例題4: 2/7+2/14の分母を揃え、4/14+2/14と表します。
-
分子同士を足しましょう。分子は分数の上の数字です。[7]
- 例題3: 5+9=14となり、答えの分子は14です。
- 例題4: 4+2=6となり、答えの分子は6です。
-
手順3で見つけた最小公分母を答えの分母とします。もしくは、分母が同じ分数で書き直した計算式の分母を使いましょう。どちらも同じ数字です。
- 例題3:分母は15です。
- 例題4:分母は 14です。
-
分母を下に、分子を上に書き込んで答えを求めましょう。
- 例題3: 1/3+3/5=?の答えは14/15です。
- 例題4: 2/7+2/14=?の答えは6/14です。
-
約分しましょう。分母と分子の両方を最大公約数で割り、最も簡単な分数で表します。[8]
- 例題3: 14/15は約分できません。
- 例題4: 6/14は、分子と分母を最大公約数の2で割り、約分して3/7と表します。
広告
ポイント
- 分子を足す前に、分母が同じであることを必ず確認しましょう。
- 分母を足すのはやめましょう。分母を揃えたら、それを答えに使います。
- 真分数や仮分数と帯分数を足す場合は、まず帯分数を仮分数に直すと計算しやすいでしょう。帯分数を仮分数に直してから、上の手順に従って計算します。
広告
出典
- ↑ https://www.khanacademy.org/math/arithmetic/fraction-arithmetic/arith-review-adding-subtracting-frac/v/adding-fractions-with-like-denominators
- ↑ https://www.mathsisfun.com/fractions_addition.html
- ↑ https://www.mathsisfun.com/simplifying-fractions.html
- ↑ https://www.khanacademy.org/math/arithmetic/fraction-arithmetic/arith-review-add-sub-fractions/v/adding-small-fractions-with-unlike-denominators
- ↑ http://www.algebra-class.com/adding-fractions-with-unlike-denominators.html
- ↑ https://www.youtube.com/watch?v=RIhwfqULbAE
- ↑ https://youtube.com/tDQipFjAoT8?t=274
- ↑ https://www.mathsisfun.com/greatest-common-factor.html
この記事は役に立ちましたか?
広告



